The SR family proteins B52 and dASF/SF2 modulate development of the Drosophila visual system by regulating specific RNA targets.

نویسندگان

  • Mathieu Gabut
  • Jérôme Dejardin
  • Jamal Tazi
  • Johann Soret
چکیده

Deciphering the role of alternative splicing in developmental processes relies on the identification of key genes whose expression is controlled by splicing regulators throughout the growth of a whole organism. Modulating the expression levels of five SR proteins in the developing eye of Drosophila melanogaster revealed that these splicing factors induce various phenotypic alterations in eye organogenesis and also affect viability. Although the SR proteins dASF/SF2 and B52 caused defects in ommatidia structure, only B52 impaired normal axonal projections of photoreceptors and neurogenesis in visual ganglia. Microarray analyses revealed that many transcripts involved in brain organogenesis have altered splicing profiles upon both loss and gain of B52 function. Conversely, a large proportion of transcripts regulated by dASF/SF2 are involved in eye development. These differential and specific effects of SR proteins indicate that they function to confer accuracy to developmental gene expression programs by facilitating the cell lineage decisions that underline the generation of tissue identities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global analysis of positive and negative pre-mRNA splicing regulators in Drosophila.

To gain insight into splicing regulation, we developed a microarray to assay all annotated alternative splicing events in Drosophila melanogaster and identified the alternative splice events controlled by four splicing regulators: dASF/SF2, B52/SRp55, hrp48, and PSI. The number of events controlled by each of these factors was found to be highly variable: dASF/SF2 strongly affects >300 splicing...

متن کامل

Distinctive features of Drosophila alternative splicing factor RS domain: implication for specific phosphorylation, shuttling, and splicing activation.

The human splicing factor 2, also called human alternative splicing factor (hASF), is the prototype of the highly conserved SR protein family involved in constitutive and regulated splicing of metazoan mRNA precursors. Here we report that the Drosophila homologue of hASF (dASF) lacks eight repeating arginine-serine dipeptides at its carboxyl-terminal region (RS domain), previously shown to be i...

متن کامل

Blastocyst formation is blocked in mouse embryos lacking the splicing factor SRp20

SRp20 is a splicing factor belonging to the highly conserved family of SR proteins [1] [2] [3] [4], which have multiple roles in the regulation of constitutive and alternative splicing in vivo. It has been suggested that SR proteins are involved in bringing together the splice sites during spliceosome assembly [5]. SR proteins show partial redundancy, as each single SR protein can restore splic...

متن کامل

Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer.

The Drosophila doublesex female-specific splicing enhancer consists of two classes of regulatory elements, six 13-nucleotide repeat sequences, and a single purine-rich element (PRE). Here, we show that the Drosophila regulatory proteins Transformer (Tra) and Transformer 2 (Tra2) recruit different members of the SR family of splicing factors to the repeats and the PRE. The complexes formed on th...

متن کامل

A Role for the Serine/Arginine-Rich (SR) Protein B52/SRSF6 in Cell Growth and Myc Expression in Drosophila

Serine-/arginine-rich (SR) proteins are RNA-binding proteins that are primarily involved in alternative splicing. Expression of some SR proteins is frequently upregulated in tumors, and previous reports have demonstrated that these proteins can directly participate in cell transformation. Identifying factors that can rescue the effects of SR overexpression in vivo is, therefore, of potential th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 27 8  شماره 

صفحات  -

تاریخ انتشار 2007